Assessment and design implications of large ground deformations

Ross W. Boulanger, UC Davis



PEER Summative Meeting – June 13, 2007

## Large ground deformation effects

Liquefaction & lateral spreading are major causes of foundation damage during earthquakes.

Past 10 years …



## Field studies

Detailed studies of unique cases involving fine-grained soils from the 1999 Kocaeli and 1999 Chi-Chi earthquakes.

Basis for re-examination of broader databases.





## Field studies

Findings led to advances in design practices for:

- Liquefaction susceptibility for fine-grained soils
- Liquefaction triggering
- Lateral spreading assessments





**NSF-PEER Summative Meeting** 

## Simulation

Hierarchy of 2-D and 3-D modeling capabilities developed.



Arduino et al.



## Simulation

Enabled studies of deep foundation systems.

- Expanded practice through tools & design guidance.
- Opened new opportunities for future advances.







## Validation

Dynamic centrifuge, shake table, and field tests addressed knowledge gaps for deep foundations.







## Validation

- Mechanisms of interaction.
- Provided for validation/evaluation of analysis methods
  - Equivalent static design methods, and
  - Nonlinear dynamic analyses.



DDC01 in Large Kobe Motion



# Design

Benchmarking studies to demonstrate methodologies and facilitate early adoption in practice.

3 73.2 36.6 45.7 45.7 45.7 36.6 73.2 8.5 Pier 3 Pier 4 Pier 1 Pier 2 2.4  $\bigcirc$ 4.0 3 (4)6.4 Pile 0 Pile 1 Pile 2 Pile 3 Pile 4 Pile 5 (5)10.6  $\overline{}$  $\overline{}$  $\frown$  $\frown$ soil 0 soil 1 soil 2 soil 3 soil 4 soil 5 Mean annual rate of exceedance,  $\lambda_{\text{EDP}}$  (1/year) 10<sup>0</sup> using total uncertainty ( $\sigma = 0.77$ ) using zero uncertainty ( $\sigma = 0.00$ ) 778 10 10 10<sup>-3</sup> T<sub>P</sub>=475 yrs 10 11 0 20 120 40 60 80 100 Pier 4 max. drift ratio (%)

#### Arduino/Kramer/Shin



## Partnerships

Rapid advances through numerous strong collaborations across:

- PEER and PEER Lifelines
- Engineering practice private and government
- National and international researchers





## **PEER Achievements**

- Diverse contributions on science & design practices for the effects of large ground deformations
  - Field studies
  - Simulation
  - Validation
  - Design
  - Partnerships
- Significant impacts on PBEE and decision making for risk mitigation.
- Strong "foundation" for continuing contributions.

